
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION

Journal of Sound and Vibration 287 (2005) 367–373
0022-460X/$ -

doi:10.1016/j.

�Correspon

E-mail add
www.elsevier.com/locate/jsvi
Short Communication

Simplified continuous finite element method for a class of
nonlinear oscillating equations

Z.G. Xionga,�, H. Hub

aSchool of Mathematics and Computational Science, Hunan University of Science and Technology, Xiangtan 411201,

Hunan, PR China
bSchool of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, PR China

Received 29 March 2004; received in revised form 17 December 2004; accepted 28 January 2005

Available online 8 April 2005
1. Introduction

The finite element method is one important technique for approximating the solutions of
differential equations, and it is widely used for science and engineering algorithms. Aziz and
Monk [1] solved the heat equation with continuous finite element method. Pan and Chen [2]
studied the superconvergence of continuous finite element method for initial value problem of
ordinary differential equation. For nonlinear parabolic problem, Zlamal [3] proposed a simplified
finite element method—the interpolated coefficient finite element.

The main purpose of this paper is to use the simplified quadratic continuous finite element
method for computing numerical oscillatory solutions of nonlinear equations:

€x ¼ f ðo2
0; e; xÞ; xð0Þ ¼ A; _xð0Þ ¼ 0, (1)

where overdots denote differential with respect to time t and e is a positive parameter, and where
f ðxÞ ¼ f ðo2

0; e;xÞ is an odd function for any x 2 R ¼ ð�1;þ1Þ:
Mickens [4] systematically studied oscillatory problems. Lim and Wu [5–7] present some new

approaches to solving the nonlinear oscillators. Recently Hu [8] studied the Duffing equation by a
classical perturbation technique which is valid for large parameters. He pointed out that the
maximal relative error of the second approximate frequency with respect to the exact solution is
see front matter r 2005 Elsevier Ltd. All rights reserved.
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less than 0.03%. This paper will apply the simplified continuous finite element method which is
also valid for large parameters. We can obtain the better approximate frequency whose maximal
relative error is less than 0.00001% for any e:

For introducing the finite element method, we change Eq. (1) into first-order ordinary
differential equations

_x ¼ y; xð0Þ ¼ A;

_y ¼ f ðo2
0; e; xÞ; yð0Þ ¼ 0:

(2)

Setting u ¼ ðx; yÞT and FðuÞ ¼ ðy; f ðo2
0; �; xÞÞ

T; Eq. (2) also becomes

_u ¼ FðuÞ; uð0Þ ¼ ðA; 0ÞT. (3)
2. Simplified quadratic continuous finite element method

Taking a suitable large number T�40; the interval ½0;T�
 is partitioned uniformly into N

elements. Let h ¼ T�=ð2NÞ denote half-step size of this partition and Jn ¼ ½tn�1; tn
 an element.
Denote integer nodes by tn ¼ 2nh and half-integer nodes by tn�1=2 ¼ ð2n � 1Þh: We define the
following nodal basis:

j0ðtÞ ¼

1

2h2
ðt � t1=2Þðt � t1Þ; t0ptpt1;

0 otherwise;

8<
: (4)

j0ðtÞ ¼

1

2h2
ðt � tN�1=2Þðt � tN�1Þ; tN�1ptptN ;

0 otherwise;

8<
: (5)

jiðtÞ ¼

1

2h2
ðt � ti�1=2Þðt � ti�1Þ; ti�1ptpti;

1

2h2
ðt � tiþ1=2Þðt � tiþ1Þ; tiptptiþ1;

0 otherwise;

8>>>>><
>>>>>:

(6)

ji�1=2 ¼
�

1

h2
ðt � ti�1Þðt � tiÞ; ti�1ptpti;

0 otherwise;

8<
: i ¼ 1; 2; . . . ;N, (7)

then the quadratic continuous finite element subspace is defined by

Sh
0 ¼ u ¼

XN

i¼0

jiai þ
XN

i¼0

ji�1=2ai�1=2; ai; ai�1=2 2 R
2; u1ð0Þ ¼ A; u2ð0Þ ¼ 0

( )
.
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Now let U 2 Sh
0 be the quadratic continuous finite element approximation of the exact solution

u of Eq. (3) by Z
Jn

Z _Udt ¼

Z
Jn

ZFðUÞdt (8)

for any Z 2 P1ðJnÞ where P1 denotes the space of all linear, one-variable polynomial. Substituting
the nodal basis, the above formula becomesZ

Jn

½ _jn�1Un�1 þ _jn�1=2Un�1=2 þ _jnUn
Zdt

¼

Z
Jn

Fðjn�1Un�1 þ jn�1=2Un�1=2 þ jnUnÞZdt ð9Þ

for any Z 2 P1ðJnÞ:
For the sake of simplicity, we take interpolation IhFðUÞ ¼ jn�1FðUn�1Þ þ jn�1=2FðUn�1=2Þ þ

jnFðUnÞ 2 Sh
0 in the place of Fðjn�1Un�1 þ jn�1=2Un�1=2 þ jnUnÞ where Ih denotes interpolating

operator. So we define the simplified quadratic continuous finite element solution U satisfyingZ
Jn

½ _jn�1Un�1 þ _jn�1=2Un�1=2 þ _jnUn
Zdt

¼

Z
Jn

½jn�1FðUn�1Þ þ jn�1=2FðUn�1=2Þ þ jnFðUnÞ
Zdt ð10Þ

for any Z 2 P1ðJnÞ:
The test functions ZðtÞ are taken, respectively, by _jn�1=2ðtÞ and _jnðtÞ which are linearly

independent linear polynomials. By rearranging the computing schemes,

8
3
I2 �4

3
I2

�4
3
I2

7
6
I2

2
4

3
5 Un�1=2

Un

" #
¼ h

O2 �2
3
I2

2
3
I2

1
2
I2

2
4

3
5 FðUn�1=2Þ

FðUnÞ

" #
þ

4
3
Un�1 þ

2
3
hFðUn�1Þ

�1
6
Un�1 �

1
6
hFðUn�1Þ

2
4

3
5 ð11Þ

is gained, where I2 denotes two-order unit matrix, O2 denotes two-order zero matrix.
Letting

A ¼

8
3I2 �4

3I2

�4
3
I2

7
6
I2

" #
; B ¼

O �2
3I2

2
3
I 1

2
I

" #

and

Wn ¼
Un�1=2

Un

" #
; GðWnÞ ¼

FðUn�1=2Þ

FðUnÞ

" #
; En�1 ¼

4
3
Un�1 þ

2
3

hFðUn�1Þ

�1
6
Un�1 �

1
6

hFðUn�1Þ

" #

then we have the following simplified quadratic continuous finite element method scheme:

HðWnÞ ¼ AWn � hBGðWnÞ � En�1 ¼ 0. (12)
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From (12), we obtain corresponding Newton iterative algorithm scheme

Wkþ1
n ¼Wk

n � ½DHðWk
nÞ


�1HðWn�1Þ; k ¼ 0; 1; . . . , (13)

where D denotes differential with respect to vector W:
3. Continuous finite element solution of the Duffing equation

In this section, in order to analyze the quadratic finite element solution, we take the Duffing
equation

€x þ o2
0x þ ex3 ¼ 0; xð0Þ ¼ A; _xð0Þ ¼ 0 (14)

for example. For computing the approximate frequency and solution in one period, the
calculation procedure is as follows:
(1)
 When the parameter e; the basic frequency o0; and the initial value x0 ¼ A; y0 ¼ 0 are given,
an initial guess period is determined by [8]

T� ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

0 þ
3
4
�A2

q�
. (15)
(2)
 After the half-time step size h being given, in the light of the Newton iterative algorithm
scheme (13), we can compute continuous finite element solution xn ¼Wnð3Þ and xn�1=2 ¼

Wnð1Þ on the integer nodes and half-integer nodes in the time interval ½0; 3T�
:

(3)
 If fxn40; 0pnonk and xnk

p0; then Th=4 2 Jn ¼ ½tnk�1; tnk

 holds where Th is approximate

period. In the element Jn the approximate analytic formula of xðtÞ satisfies

xðtÞ ¼ xnk
jnk

ðtÞ þ xnkþ1=2jnkþ1=2ðtÞ þ xnkþ1jnkþ1ðtÞ

¼
1

2h2
xnk

ðt � tnkþ1=2Þðt � tnk
Þ �

1

h2
xnkþ1=2ðt � tnkþ1Þðt � tnk

Þ

þ
1

2h2
xnkþ1ðt � tnkþ1=2Þðt � tnkþ1Þ. ð16Þ

The polynomial (16) must have a root which is a quarter of approximate period. So high
accuracy approximate period Th and frequency oh are solved.
(4)
 Letting N ¼ Th=ð2hÞ; ðtn;xnÞ; n ¼ 0; 1; 2; . . . ;N and ðtn�1=2; xn�1=2Þ; n ¼ 1; 2; . . . ;N are plotted
on t–x plane.
To compare the present results with exact results, we take o2
0 ¼ 1: When half-step size h �

0:025T�; we compute continuous finite element solution of the Duffing equation (14), respectively,
for (1) A ¼ 1; e ¼ 1; (2) A ¼ 10; e ¼ 10; and plotted in Figs. 1 and 2.

The exact frequency of the periodic motion of the Duffing equation is given by [9]

oe ¼
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �A2

p
2

Z p=2

0

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � m sin2 y

p
 !�1

; m ¼
�A2

2ð1þ �A2Þ
. (17)
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Fig. 1. The continuous finite element solution for A ¼ 1; e ¼ 1:
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Fig. 2. The continuous finite element solution for A ¼ 10; e ¼ 10:

Table 1

Comparison of the continuous finite element approximate frequency with the exact frequency for the Duffing equation

eA2 oe by Eq. (17) [9] oh by CFEM Relative error

0.2 1.072000173865327 1.072000172990982 8:1562E � 10

1 1.317776083580348 1.317776073728296 7:4763E � 9

10 2.866640331675818 2.866640136434981 6:8108E � 8

100 8.533586188528274 8.533586181667106 2:1640E � 9

1000 26.81073816784440 26.81073845294955 1:0634E � 8

10 000 84.72747890121053 84.72747996079603 1:2506E � 8
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For comparison, the exact frequency oe obtained by integrating Eq. (17) and the approximate
frequency oh computed by simplified quadratic continuous finite element method (CFEM) are
listed in Table 1.
4. Continuous finite element solution of €x þ xð2mþ1Þ=ð2nþ1Þ ¼ 0

Similar to the algorithm of the Duffing equation, we compute continuous finite element
solution of €x þ xð2mþ1Þ=ð2nþ1Þ ¼ 0; xð0Þ ¼ 1; _xð0Þ ¼ 0 for (1) m ¼ 0; n ¼ 1; (2) m ¼ 2; n ¼ 1 and
picture them in period in Figs. 3 and 4.
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Fig. 3. The continuous finite element solution for €x þ x1=3 ¼ 0:
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Fig. 4. The continuous finite element solution for €x þ x5=3 ¼ 0:
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For m ¼ 0 and n ¼ 1; the approximate frequency oh ¼ 1:070450419702578 is obtained by
continuous finite element method. Gottlieb [10] obtained the exact frequency oEX ¼ 1:070451: This
means that we obtain the better approximate frequency whose relative error is less than 0:00006%:
5. Concluding remarks

The simplified quadratic continuous finite element method for a class of nonlinear oscillating
equations is introduced. Chen [11] pointed out that the quadratic finite element solution have four-
order high accuracy for ordinary differential equations with initial problem. When half-time step-
size is taken for suitable small, the algorithm scheme (13) can give excellent numerical frequencies of
the Duffing equation for both small and large parameters and oscillation amplitude.

Now finite element method is an effective technique for solving differential equations. For the
semilinear differential equations with nonlinear term f ðuÞ; the simplified finite element method,
which requests that f ðuhÞ is replaced by interpolation Ih f ðuhÞ in numerical computation, can
simplify calculation. In summary, simplified continuous finite element method may be a better
numerical method for complex nonlinear oscillating equations.
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